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No deterministic approach to obtaining a crystal structure from a set of

diffraction intensities exists, despite significant progress in traditional probabil-

istic direct methods. One of the biggest hurdles in determining a crystal structure

algebraically is solving a system of many polynomial equations of high power on

intensities in terms of atomic coordinates. In this study, homotopy continuation

is used for exhaustive investigation of such systems and an optimized homotopy

continuation method is developed with random restarts to determine small

(N < 5) crystal structures from a minimum set of error-free intensities.

1. Introduction

The lack of phase information in observed diffraction data

poses a fundamental obstacle for determination of crystal

structures. Nevertheless, diffraction intensities can be related

to the atomic coordinates directly, without phases, through a

system of trigonometric equations. Ott (1927), Avrami (1938)

and, most recently, Pilz & Fischer (2000) and Cervellino &

Ciccariello (2005) formulated this system in various algebraic

forms, but no practical method of solving such a system has

emerged yet. It was realized early on that the problem of

determining an N-atom structure from the algebraic minimum

of 3(N � 1) error-free intensities has multiple solutions

(Hauptman & Karle, 1951). Recently, we rigorously enumer-

ated this ambiguity and demonstrated that the number of

crystal structures that yield the same minimum set of inten-

sities increases exponentially with increasing N (Al-Asadi et

al., 2012, 2014). The solutions themselves can be determined

by methods of elementary algebra only for theoretically

relevant one-dimensional crystals of small numbers of atoms

(N < 5) (Shkel et al., 2011), whereas such methods do not work

for larger structures or for higher dimensionality. Cervellino

and Ciccariello elegantly demonstrated that, in principle, the

structure ambiguity can be reduced by using chemical infor-

mation such as bond lengths, allowing one to determine one-

dimensional crystal structures of up to 20 atoms in some cases

(Cervellino & Ciccariello, 1999). Inspired by the successes of

traditional direct methods that can yield structures of N � 100

atoms from many more intensities than the algebraic

minimum (Hauptman & Karle, 1957, 1958; Sheldrick, 2008;

Miller et al., 1994), we used techniques from modern compu-

tational algebra to develop a novel approach to determining

crystal structures directly from intensities. Herein we present a

homotopy continuation based method of crystal structure

determination from the algebraic minimum of error-free

intensities for small structures.
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2. Theoretical background

For a crystal with a unit cell containing N equal point atoms

with fractional coordinates (xj, yj, zj) for j = 1, 2, . . . , N � 1

and (xN, yN, zN) = (0, 0, 0), the structure factors can be written

in the following Laurent polynomial form:

Fhkl ¼ 1þ
PN�1

j¼1

�h
j �

k
j �

l
j; ð1Þ

where the complex atomic coordinates �j ¼ expð2�ixjÞ,

�j ¼ expð2�iyjÞ, �j ¼ expð2�izjÞ lie on the unit circle in the

complex plane, and h; k; l are Miller indices. The observed

diffraction intensities, after proper normalization, can then

also be expressed as Laurent polynomials:

Ihkl ¼ 1þ
PN�1

j¼1

�h
j �

k
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l
j

 !
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Because the coordinate origin coincides with the N-th atom,

there are 3(N � 1) unknown coordinates. Therefore, at least

3(N � 1) diffraction intensities are needed for system (2) to

yield a solution, i.e. a crystal structure.

As N increases, the size and the degree of system (2) rapidly

increase, resulting in the exponentially increasing number of

its solutions (Al-Asadi et al., 2012, 2014). To resolve this

ambiguity, higher-order intensity data are needed, over-

determining the system. However, no matter how many

intensities are known, solutions of system (2) are divided into

groups of 2N! solutions in each group, where the solutions

within each group cannot be resolved. These 2N! solutions are

so-called enantiomers, which arise due to the invariance of

system (2) with respect to the permutations of atoms in the

structure (the factorial operation) and with respect to the

symmetry relative to the coordinate origin (the factor of 2).

For N = 2 these two operations are equivalent; therefore, the

factor of 2 is absent. We will call the crystal structure deter-

mined, if any crystal structure among its enantiomers is found.

We will call the group of 2N! enantiomer structures a unique

structure. The atom permutation operation yields a physically

identical crystal structure, as all atoms are identical; the

centrosymmetric enantiomer can often be resolved in practice

based on the a priori stereochemical knowledge of the struc-

ture of interest.

This study consists of two parts. In the first part, an existing

brute-force polynomial system solving software is utilized in

order to analyze the behavior of system (2) for small N. Next,

we use our own, much more efficient, algorithm for solving

system (2) tailored specifically for the crystal structure deter-

mination problem.

3. Methods

3.1. Polynomial homotopy continuation

In order to solve a system of n polynomial equations F = 0,

F ¼ ðf1; f2; . . . ; fnÞ 2 C½��n with n unknowns via homotopy

continuation, the homotopy

Ht ¼ ð1� tÞGþ tF 2 C½��n; t 2 ½0; 1� ð3Þ

is considered. Here, C½��n indicates that the coefficients of the

monomial terms of the equations can be complex numbers and

designates the independent variables as �. This relationship

links the target system F = H1 = 0 to the start system G = H0 =

0, which is usually denser than system F. Two requirements are

placed on G: (i) all solutions of G must be available and (ii)

the paths generated from solutions of G to those of F by

varying t from 0 to 1 must be smooth. Then, starting from each

solution of G, one can follow the homotopy path �(t) of

solutions of Ht = 0 by making small steps in t and determining

solutions of Ht = 0 after each step, in order to determine the

solutions of F by using the so-called predictor–corrector

method.

3.1.1. Predictor–corrector steps. Each homotopy step is

carried out by incrementing t by �t, yielding H in equation (3)

at t + �t. Then the initial approximation of the solution of

system H(t + �t) = 0 can be taken at the previous point t, i.e.

initially �(t + �t) = �(t). This initial approximation for �(t + �t)

serves as a starting point for solving system H(t + �t) = 0 by

the multivariate Newton’s method:

�kþl ¼ �k � ½JHð�kÞ�
�1Hð�kÞ; ð4Þ

where JH is the Jacobian of H(�k). Provided that the increment

�t is sufficiently small, the initial approximate solution �(t)

will lie within the radius of convergence of Newton’s method.

The inversion of the Jacobian matrix was performed by a

robust Gaussian elimination algorithm with row pivoting. The

polynomial nature of the equations guarantees that there are

no singularities, with possible exceptions at the end of the

homotopy paths (Verschelde, 1999).

3.2. Solving system (2) with PHCPack

PHCPack is a robust open-source implementation of

polynomial homotopy continuation by Jan Verschelde

(Verschelde, 1999). The ‘black-box’ PHCPack solver uses a

start system with a number of roots that is an upper bound on

the number of roots of the target system, according to Bern-

stein’s theorem (Bernstein, 1975), ensuring that all solutions of

system (2) are found. This upper bound is a good approx-

imation to the number of roots of system (2), but the

construction of such a start system is computationally expen-

sive, increasing exponentially in complexity with increasing N

(Verschelde, 1999). For example, for N = 4, PHCPack spends

50% of the time on building the start system. PHCPack

outputs all solutions of a given input polynomial system for

which the number of unknowns is equal to the number of

equations. PHCPack was able to solve system (2) for N = 2, 3

and 4 from 3(N � 1) intensities, where for N = 4 one calcu-

lation typically lasted hours. For N = 2 system (2) consisted of

three equations for I100, I010 and I001; for N = 3 system (2)

consisted of six equations for I100, I010, I001, I110, I101 and I011;

and for N = 4 system (2) consisted of nine equations for I100,

I010, I001, I110, I101, I011, I1�110, I10�11 and I01�11. As expected, the

number of roots of the start system was the same as that

reported previously [see Table 2 in Al-Asadi et al. (2014) for N
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= 2 and 3; for N = 4 this set of intensities was not previously

considered].

In order to use PHCPack to solve a large number of systems

(2) for random crystal structures in an automated fashion, we

wrote a Java interface to PHCPack that handled generating

the input system, passing the system to PHCPack and

analyzing the output. For a structure of size N, this interface

generates N � 1 random fractional coordinates (xj, yj, zj) for j

= 1, 2, . . . , N� 1, with the last coordinate (xN, yN, zN) = (0, 0, 0),

i.e. a random structure. This structure was used to calculate

3(N � 1) lowest-order intensities Ihkl according to system (2).

PHCPack was then used to find an exhaustive list of the

solutions of system (2) for these intensities. One of the solu-

tions, by construction, coincides with the starting set of coor-

dinates used to generate the system. The process was then

repeated for many random structures to investigate the

number of structures that satisfied a given system (2), i.e. to

investigate the ambiguity of structure determination and the

efficiency of this approach.

3.3. Analysis of solutions of system (2) and the number of
additional intensities needed to resolve a unique structure

For each PHCPack output for a given system (2) the

physically meaningless solutions were sorted out by checking

the magnitudes of the coordinates (�, �, �), which all need to

be equal to 1 for a solution to be physically meaningful; these

included paths that diverged. We then verified that the

physically meaningful solutions satisfy system (2), to rule out

unlikely convergence problems with PHCPack, and enumer-

ated confirmed solutions. Next, a few higher-order intensities

(beyond the minimum set used originally) were calculated for

each solution, simulating an overdetermined system. The

interface considered one additional intensity at a time in order

to check the minimum required number of intensities to

differentiate between the groups of 2N! enantiomer solutions.

Extra intensities were included until the solutions could be

divided into groups of 2N! solutions, with each group yielding

a unique set of higher-order intensities. In addition to

obtaining the minimum number of higher-order intensities

required to yield a unique structure, the total number of

groups of 2N! enantiomers was recorded.

3.4. Sparse polynomial homotopy continuation with random
restarts

To replace the brute-force PHCPack approach with a more

efficient method tailored for our problem, a polynomial

homotopy continuation algorithm was written in C++ to solve

system (2), as described in x3.1. As in x3.2, the test structures

were generated randomly, so that we could ascertain that the

algorithm was robust and indeed yielded the right solution, i.e.

one of 2N! indistinguishable enantiomers of a test structure, in

each case. The 3(N � 1) intensities (for the same hkl sets as in

PHCPack calculations, as described in x3.2) were then

generated for each random structure (to be determined) and

then treated as measurements; this original structure was then

only used to check if the method yielded one of its 2N!

enantiomers as a solution. Because the problem of practical

interest is to find an enantiomer of this target structure, rather

than to exhaustively solve system (2), finding all possible

solutions of system (2) is not needed. To check whether a

solution was an enantiomer of the target structure, the N � 1

non-origin atoms of the solution and the target structure were

first ordered (e.g. in the order of increasing xj) and then the

two sets of coordinates were compared. This comparison was

carried out for the origin coinciding with each of the atoms of

the solution and its enantiomer symmetrical with respect to

this origin until the match with the target structure was found

or all enantiomers were checked. Such an algorithm has

polynomial and not factorial complexity as a function of N,

owing to the atom ordering operation prior to the comparison.

Our method is optimized in three ways. (i) As a start system

for the homotopy we use system (2) constructed for another

random structure. (ii) Instead of looking for all solutions, we

calculate only one homotopy path for each start system

(sparse homotopy), starting from the random structure used to

generate this system. If this run does not yield the target

structure or its enantiomer, we generate another start system

from a new random structure and carry out the single-path

homotopy continuation again (random restart). (iii) Finally,

this algorithm does not spend time constructing an optimal

system with all known solutions, saving significant computa-

tional effort. This method does not find all possible solutions

of system (2), since it does not trace all homotopy paths

exhaustively; it is executed until the structure of interest is

found. Nevertheless, this method works efficiently, at least for

small N, due to the choice of the start system and the start

solution as well as the random restart process, as we demon-

strate in x4. The number of runs yielding physically meaningful

solutions prior to obtaining the target solution was also

monitored, to evaluate the effect of increasing the fraction of

physically meaningful solutions in this algorithm relative to

PHCPack. It should be noted that even though the random

restart process may seem less efficient than the systematic

solution finding process by PHCPack, this effect is negligible

(x3.5). Because the number of paths leading to the solution of

interest is much smaller than the total number of paths, the

probabilistic expected number of paths traced before a correct

path is essentially the same whether the paths are traced

randomly or systematically. (This number of paths is

approximately equal to the ratio of the total number of paths

to the number of correct paths.) Our approach is efficient due

to a highly enriched number of correct paths among all paths,

greatly overcoming a very minor offset due to random

sampling.

3.5. Calculation of the average number of homotopy paths
needed to find a solution

If n is the total number of solutions of a polynomial system,

one requires tracing n distinct homotopy paths to solve this

system exhaustively. In determining a crystal structure, one

needs to find one solution, i.e. trace one of m correct paths of

interest, instead of tracing all n paths, where m = 2N! for N > 2
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and m = 2 for N = 2. Since it is not known a priori if a path will

lead to the solution of interest, the paths are chosen at

random. Determining the average number of paths to be

traced to find one of the m solutions out of a total of n paths is

equivalent to a problem in probability theory, where one

needs to draw a white ball out of a bag containing m white and

n � m black balls (Blitzstein & Hwang, 2015). When an

incorrect (black) ball is not returned to the bag after it is

drawn, the process is analogous to solving a system by

PHCPack, where the paths are never repeated. When an

incorrect ball is placed back in the bag, the process is analo-

gous to our random restart method. In the former case

(without replacement), the theory yields for the average

number of balls that it takes to draw a white ball (n � m)/

(m + 1) + 1. In the latter case (with replacement), this number

is equal to n/m, the reciprocal of the probability of drawing a

white ball. Even for N = 2 (n = 8, m = 2), when the relative

difference between these two numbers is the largest, these

numbers are 6/3 + 1 = 3 and 8/2 = 4, i.e. the effect of

replacement is only one extra homotopy path to be traced (1/8

of all paths). This unfavorable effect of replacement becomes

exponentially smaller in the relative sense with increasing N,

since the fraction of correct paths [reciprocal to the expo-

nentially increasing number of unique structures (Al-Asadi et

al., 2014)] decreases exponentially with increasing N.

4. Results

4.1. Crystal structure determination and analysis with
PHCPack

In order to develop an efficient crystal structure determi-

nation method by using homotopy continuation, we first

performed exhaustive analysis of solutions of system (2) with

PHCPack for N = 2, 3 and 4. As we demonstrated previously

for small one-dimensional crystals, ambiguity of crystal

structure determination from an algebraic minimum of

intensities generally varies depending on a given set of

intensities (Shkel et al., 2011). Even though the maximum

ambiguity increases exponentially with increasing N (Al-

Asadi et al., 2012, 2014), how likely is it to achieve such

ambiguity, given a set of intensities? We used PHCPack to

obtain all possible solutions of system (2) for many sets of

intensities, each generated from a random crystal structure.

Solutions in each case were divided into physically meaningful

ones, i.e. those that correspond to a crystal structure and those

that do not. The number of all physically meaningful solutions

(structures) that satisfy the system was divided by 2N! (the

number of enantiomers for a given structure) to calculate the

number of unique crystal structures, as defined above. The

upper bound on the number of unique structures was calcu-

lated as the number of all finite solutions divided by 2N!.

For N = 2, computation for each system followed eight

homotopy paths, equal to the number of roots given by

Bernstein’s theorem in this case. Almost all random systems

(876 out of 914 systems) yielded the maximum possible

number of unique structures, four (Fig. 1a). In these cases

Bernstein’s bound, four unique structures (Al-Asadi et al.,

2014), is exact, and all of the solutions are physically mean-

ingful. For the other 38 systems, one or more paths diverged or

ended on a physically meaningless solution. As predicted by

probability theory (x3.5), in the 876 cases it took on average
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Table 1
The case of the most ambiguous crystal structure determination for N = 3
(with one atom at the coordinate origin) from the minimum of intensity
data, as specified.

Structure
number (x1, y1, z1) (x2, y2, z2) h k l Ihkl

1 (0.532, 0.956, 0.434) (0.840, 0.550, 0.411) 1 0 0 1.400244
2 (0.470, 0.469, 0.662) (0.187, 0.329, 0.122) 0 1 0 1.363809
3 (0.118, 0.371, 0.189) (0.463, 0.909, 0.723) 0 0 1 1.451045
4 (0.793, 0.552, 0.900) (0.264, 0.591, 0.543) 1 1 0 1.095918
5 (0.765, 0.553, 0.537) (0.236, 0.590, 0.854) 1 0 1 4.511850
6 (0.328, 0.188, 0.372) (0.466, 0.472, 0.453) 0 1 1 1.596879
7 (0.549, 0.898, 0.536) (0.940, 0.536, 0.843)
8 (0.240, 0.253, 0.450) (0.769, 0.473, 0.072)
9 (0.865, 0.620, 0.238) (0.331, 0.080, 0.467)
10 (0.530, 0.531, 0.568) (0.812, 0.672, 0.982)
11 (0.420, 0.092, 0.276) (0.984, 0.630, 0.810)
12 (0.542, 0.561, 0.539) (0.630, 0.984, 0.670)
13 (0.958, 0.529, 0.319) (0.554, 0.840, 0.463)
14 (0.216, 0.277, 0.090) (0.471, 0.804, 0.635)
15 (0.370, 0.119, 0.330) (0.458, 0.653, 0.461)
16 (0.466, 0.472, 0.707) (0.138, 0.284, 0.172)
17 (0.951, 0.541, 0.753) (0.552, 0.619, 0.220)
18 (0.596, 0.919, 0.533) (0.042, 0.540, 0.778)
19 (0.592, 0.263, 0.533) (0.036, 0.473, 0.781)
20 (0.012, 0.618, 0.193) (0.578, 0.541, 0.727)
21 (0.465, 0.894, 0.454) (0.333, 0.536, 0.367)
22 (0.471, 0.038, 0.390) (0.245, 0.590, 0.446)

Figure 1
The number of unique structures of sizes (a) N = 2 and (b) N = 3 that were
determined from a minimum set of low-resolution intensity data by using
PHCPack software.



6/(2+1) + 1 = 3 homotopy paths to find the correct structure

(or its enantiomer).

For N = 3, each computation followed 420 paths, with a

significant fraction of the paths diverging to infinity or ending

in a physically meaningless solution for most of the systems.

The upper bound on the number of unique structures, 28

(corresponding to the observed maximum of 28 � 2N! = 336

homotopy paths leading to a finite solution), was never

obtained; the maximum number of unique structures that was

obtained was 22 (only twice); these 22 structures are given in

Table 1, together with the intensity values. The number of

unique structures in this case was almost always much smaller

than this upper bound (two or four unique structures in a

majority of cases; Fig. 1b). Four structures correspond to 11%

of paths, indicating that finding all possible solutions of system

(2) to determine a crystal structure is computationally

wasteful. For N = 3, the expected value for the number of

paths traced to find the correct unique structure is equal to

408/13 + 1 = 32.

For N = 4, each of the three PHCPack calculations followed

66 240 paths; even a larger fraction of the paths diverged to

infinity or ended in a physically meaningless solution. Two of

the systems yielded only four unique structures, and the third

system yielded six unique structures (or 0.4% of all paths).

This indicates that, as the number of paths increases expo-

nentially, it becomes increasingly more wasteful to trace all

paths to determine a structure. The maximum number of

unique structures, calculated as the number of finite solutions

divided by 2N!, was 544, likely achievable with very low

probability, as in the case N = 3. These three data points

provide similar insight into the behavior of system (2) with

increasing N: for most random structures, the ambiguity of

crystal structure determination is much smaller than its

theoretical maximum. For N = 4 it would take on average

66 240/48 = 1380 paths per calculation to obtain the correct

structure by using PHCPack. The numerical results of the

PHCPack calculations and average numbers of paths to be

traced in order to find the unique structure are given in Table 2.

4.2. Adding diffraction intensities to eliminate ambiguity

A fundamental requirement for successful application of

traditional direct methods is that there are many more data

than unknown coordinates (Hauptman, 1986). In the algebraic

framework this means that system (2) is overdetermined. A

fundamental unanswered question that we are in a position to

answer is: how many error-free intensities beyond the alge-

braic minimum are required to resolve the above ambiguity,

or, in other words, to determine a unique structure? For N = 2,

all systems that yielded four unique structures required two

higher-order intensities to resolve them, while systems with

two unique structures required one extra intensity. For N = 3

and N = 4, all systems required only one extra intensity to

resolve unique structures, irrespective of the ambiguity. These

results indicate that surprisingly very little overdetermination

is required to resolve the crystal structure ambiguity in the

problem of finding a crystal structure from a set of error-free

diffraction intensity data.

4.3. Structure determination by sparse homotopy continua-
tion with random restarts

The PHCPack analysis indicated that the start system and

the homotopy process needed to be carefully designed to

avoid exhaustive root tracing. This was achieved by our

method of sparse homotopy continuation with random

restarts, described in x3.4. For each N = 2, 3, 4, we generated

500 random target structures and for each of these structures

we generated system (2). We then carried out sparse homo-

topy continuation with random restarts for all of these systems

and successfully found the respective target structure in every
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Table 2
Comparison of PHCPack and the random restart methods.

N

Average number
of paths traced
to determine
structure (PHCPack)

Average number
of paths traced
to determine
structure
(random restart)

Fraction of paths
leading to
any structure (PHCPack)

Fraction of paths
leading to
any structure
(random restart)

2 3 4 100% 100%
3 32 19.6 11% 28%
4 1380 203 <0.4% 7%

Table 3
Number of homotopy paths needed to reach a correct structure by using the random restart approach.

N

Number of
paths to
correct solution
for 25% systems

Number of
paths to
correct solution
for 50% systems

Number of
paths to
correct solution
for 75% systems

Average number
of paths to
correct solution

Maximum number
of paths to
correct solutions
in all runs

2 � 2 � 3 � 6 4 23
3 � 5 � 12 � 24 19.6 393
4 � 42 � 108 � 224 203 2104



case. For each system, we monitored the number of homotopy

paths (random restarts) required in order to obtain the unique

target structure. Because some paths led to physically mean-

ingless solutions, we also monitored the number of physically

meaningful solutions prior to finding the unique target

structure. These results are summarized in Tables 2 and 3

to facilitate comparison with the brute-force PHCPack

approach.

For N = 2, the number of homotopy paths (restarts) that it

took to obtain the target structure was 1 or 2 for 25% of the

systems, 3 or fewer for more than 50% of the systems and 6 or

fewer for 75% of the systems, whereas the maximum number

of such paths was 23 (Table 3). The average number of paths

needed to find a correct structure was 4. N = 2 was the only

case where our method was slightly inferior to exhaustive

polynomial homotopy using PHCPack, because all the paths

in either method end in a physically meaningful solution,

whereas the restart method may yield the same solution more

than once.

For N = 3, the number of homotopy paths needed to obtain

the target structure was 5 or fewer for 25% of the systems, 12

or fewer for 50% of the systems, 24 or fewer for 75% of the

systems, whereas the maximum number of homotopy paths

that it took for one system was 393 (Table 3). The average

number of paths that it took to find a correct structure was

19.6, saving approximately half of the time on path tracing

compared to PHCPack. On average, 5.4 (28%) of the paths

traced were physically meaningful, indicating that our method

enriches the number of physically meaningful solutions

compared to the PHCPack approach (Table 2).

For N = 4, the number of homotopy paths traced to find the

target structure was 42 for 25% of the systems, 108 for 50% of

the systems, 224 for 75% of the systems, and the maximum

number of homotopy paths traced to find the target system

was 2104 (Table 3). The average number of paths that it took

our method to find a correct structure was 203, sevenfold

fewer than for PHCPack. This demonstrates an increasingly

higher efficiency of this approach compared to solving system

(2) exhaustively by standard homotopy continuation, with

increasing structure size N. On average, 14.2 (7%) of the paths

led to physically meaningful structures, which is a �20-fold

enrichment compared with PHCPack (Table 2); although this

result indicates that further improvement is possible.

5. Discussion

Rigorous analysis of algebraic systems describing diffraction

from a crystal became possible with the advent of numerical

algebraic geometry and its development in the last 20 years or

so. To our knowledge, we are the first to apply one of such

methods, polynomial homotopy continuation, to this problem.

The exponentially increasing ambiguity of crystal structure

determination directly from the minimum of diffraction

intensities (Al-Asadi et al., 2012, 2014) precludes brute-force

root computation even for relatively small structures.

Experimental uncertainty exacerbates this problem further.

Previously we demonstrated for small one-dimensional

crystal structures that the number of physically meaningful

solutions of the crystal structure determination problem given

by system (2) depends on the structure itself (Shkel et al.,

2011). Here, we find that for three-dimensional crystals far

fewer than the maximum number of solutions are typically

physically meaningful; therefore, system (2) need not (and

should not) be solved exhaustively. Furthermore, the selection

of a start system by generating it from a physically meaningful

solution, as well as starting homotopy continuation from this

solution in our adaptation of homotopy continuation to this

problem, enriched the number of solutions that were found to

be physically meaningful, compared with solving system (2)

exhaustively. This ultimately dramatically decreased the

computational effort expended to find a correct structure. The

efficiency of our method relative to the exhaustive root finding

became nonlinearly more pronounced with increasing N.

Future work will further optimize this method in order to

enrich the number of physically meaningful solutions and take

into account higher-resolution intensities, for practical small-

molecule crystal structure determination.
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